DISCREET ${ }^{\text {TM }}$ Ultra-Low Friction Bracket

Uniting brilliant aesthetics with outstanding ultra-low frictional forces

Research reports 30\% less friction than common ceramics

During fixed appliance therapy, friction generated at the bracket/ wire and wire/ligature interfaces is a critical factor in determining

DESIGN

 the efficiency of biological tooth movement. The increase in frictional forces within the aesthetic line has been well documented over the years. The challenge was how to produce an aesthetic bracket that could satisfy the demand for optimal appearance and performance.Surface roughness plays a large role in the production of frictional forces in the majority of aesthetic brackets. Material selection and manufacturing methods needed to be revised to produce a smoother surface. A new combination of compounds which includes ceramic took advantage of properties found in these new atomic structures, and produced the ultra smooth surface we needed to decrease friction but continue to maintain high optical clarity.

We also used a new manufacturing method called Laser Sintering, used in the past to produce products that require a mirror polished surface like kitchen utensils, ophthalmic lenses, watch faces, could now be used for the production of aesthetic brackets, producing the smoothest results possible.

Ultra-Iow friction

The new material composition of the bracket shows in comparison to all other common aesthetic bracket materials on the market superior low frictional forces and provides premium sliding mechanics

Precise tolerances

This one-piece-bracket is manufactured with a unique laser aided sintering technology, allowing complex and precise bracket shapes with smallest slot tolerances for optimum performance of the prescription

Fractural toughness

Manufacturing methods, material selection, and optimum morphology produces a bracket that can withstand the rigours of orthodontic forces

Biocompatibility

The combination of different translucent materials, including ceramic, ensures outstanding high biocompatibility. Our combination of compounds are CE-certified and approved by biocompatible tests like mutagen, skin sensitization, cytotoxicity and oral toxicity

Safe debonding

Highest bonding strength combined with fracture-less debonding of the bracket ensures optimal protection of the dental enamel

Outstanding low frictional forces for optimal sliding mechanics produces reliable, predictable control of treatment.

Frictional Force in N - Offset test

Exceptional torque fracture resistance creates accurate rotation control and reduces breakages during treatment.

Average Torque Strength in Ncm

Safe, reliable and predictable debonding
Mechanical retention is achieved through indentations and added undercuts in the base of the bracket. Laboratory testing indicated that the mean linear tensile strength of enamel is 14.5 MPa . The force required for debonding falls within a range safe for the enamel yet strong enough to hold throughout full orthodontic treatment.

DISCREET ${ }^{\text {TM }}$ BRACKETS Roth*

UPPER	Torque	Ang	In/Out	Width	U - R . 018	$\mathrm{U}-\mathrm{L} .018$	$\mathrm{U}-\mathrm{R} \mathrm{.022}$	$\mathrm{U}-\mathrm{L} .022$
Central	11°	5°	0.84	3.35	$480-11$	$480-21$	$488-11$	$488-21$
Lateral	8°	9°	1.14	3.45	$480-12$	$480-22$	$488-12$	$488-22$
Cuspid	-2°	8°	0.88	3.38	$480-13$	$480-23$	$488-13$	$488-23$
Cuspid w hook	-2°	8°	0.88	3.38	$480-13 / \mathrm{H}$	$480-23 / \mathrm{H}$	$488-13 / \mathrm{H}$	$488-23 / \mathrm{H}$
1. Bicuspid	-7°	0°	1.04	3.30	$480-14 / 25$	$480-14 / 25$	$488-14 / 25$	$488-14 / 25$
1. Bicuspid w hook	-7°	0°	1.04	3.30	$480-14 / 15 / \mathrm{H}$	$480-24 / 25 / \mathrm{H}$	$488-14 / 15 / \mathrm{H}$	$488-24 / 25 / \mathrm{H}$
2. Bicuspid	-7°	0°	1.04	3.30	$480-14 / 25$	$480-14 / 25$	$488-14 / 25$	$488-14 / 25$
2. Bicuspid w hook	-7°	0°	1.04	3.30	$480-14 / 15 / \mathrm{H}$	$480-24 / 25 / \mathrm{H}$	$488-14 / 15 / \mathrm{H}$	$488-24 / 25 / \mathrm{H}$

LOWER	Torque	Ang	In/Out	Width	L- R . 018	L-L. 018	L - R . 022	L - L . 022
Anterior	0°	0°	1.09	2.80	480-31/42	480-31/42	488-31/42	488-31/42
Cuspid	- 11°	7°	0.88	2.08	480-43	480-33	488-43	488-33
Cuspid w hook	-11°	7°	0.88	2.08	480-43/H	480-33/H	488-43/H	488-33/H
1. Bicuspid	- 17°	3°	1.09	2.08	480-44	480-34	488-44	488-34
1. Bicuspid w hook	-17 ${ }^{\circ}$	3°	1.09	2.08	480-44/H	480-34/H	488-44/H	488-34/H
2. Bicuspid	-21 ${ }^{\circ}$	6°	1.19	2.13	480-45	480-35	488-45	488-35
2. Bicuspid w hook	-21 ${ }^{\circ}$	6°	1.19	2.13	480-45/H	480-35/H	488-45/H	488-35/H

Cases-Single tray or 10-case tray

1 case .018	10 case .018	1 case .022	10 case .022	Description
$480-001$	$480-001 / 10$	$488-001$	$488-001 / 10$	DISCREET ${ }^{\text {TM }}$ Bracket Upper + Lower 5-5
$480-001 / \mathrm{H}$	$480-001 / \mathrm{H} / 10$	$488-001 / \mathrm{H}$	$488-001 / \mathrm{H} / 10$	DISCREET $^{\text {TM }}$ Bracket Upper + Lower 5-5 w. Hook on 3 3
$480-001 / \mathrm{H} 345$	$480-001 / \mathrm{H} 345 / 10$	$488-001 / \mathrm{H} 345$	$488-001 / \mathrm{H} 345 / 10$	DISCREET $^{\text {TM }}$ Bracket Upper + Lower 5-5 w. Hook on 3-4-5

DISCREET ${ }^{\text {TM }}$ BRACKETS MBT (McLaughlin/Bennett/Trevisi)*

UPPER	Torque	Ang	In/Out	Width	U - R . 018	U - L . 018	U - R . 022	U - L . 022
Central	17°	4°	0.99	3.35	$490-11$	$490-21$	$499-11$	$499-21$
Lateral	10°	8°	1.27	3.45	$490-12$	$490-22$	$499-12$	$499-22$
Cuspid	0°	8°	0.93	3.38	$490-13$	$490-23$	$499-13$	$499-23$
Cuspid whook	0°	8°	0.93	3.38	$490-13 / \mathrm{H}$	$490-23 / \mathrm{H}$	$499-13 / \mathrm{H}$	$499-23 / \mathrm{H}$
1. Bicuspid	-7°	0°	1.04	3.30	$490-14 / 25$	$490-14 / 25$	$499-14 / 25$	$499-14 / 25$
1. Bicuspid w hook	-7°	0°	1.04	3.30	$490-14 / 15 / \mathrm{H}$	$490-24 / 25 / \mathrm{H}$	$499-14 / 15 / \mathrm{H}$	$499-24 / 25 / \mathrm{H}$
2. Bicuspid	-7°	0°	1.04	3.30	$490-14 / 25$	$490-14 / 25$	$499-14 / 25$	$499-14 / 25$
2. Bicuspid w hook	-7°	0°	1.04	3.30	$490-14 / 15 / \mathrm{H}$	$490-24 / 25 / \mathrm{H}$	$499-14 / 15 / \mathrm{H}$	$499-24 / 25 / \mathrm{H}$

LOWER	Torque	Ang	$\ln /$ Out	Width	L- R . 018	L-L. 018	L-R. 022	L - L. 022
Anterior	-6°	0°	1.42	2.80	490-31/42	490-31/42	499-31/42	499-31/42
Cuspid	0°	3°	0.78	2.08	490-43	490-33	499-43	499-33
Cuspid w hook	0°	3°	0.78	2.08	490-43/H	490-33/H	499-43/H	499-33/H
1. Bicuspid	- 12°	2°	1.14	2.08	490-44	490-34	499-44	499-34
1. Bicuspid w hook	-12°	2°	1.14	2.08	490-44/H	490-34/H	499-44/H	499-34/H
2. Bicuspid	-17°	2°	1.19	2.13	490-45	490-35	499-45	499-35
2. Bicuspid whook	-17°	2°	1.19	2.13	490-45/H	490-35/H	499-45/H	499-35/H

Cases-Single tray or 10-case tray

1 case .018	10 case .018	1 case .022	10 case .022	Description
$490-001$	$490-001 / 10$	$499-001$	$499-001 / 10$	DISCREET $^{\text {ma }}$ Bracket Upper + Lower 5-5
$490-001 / \mathrm{H}$	$490-001 / \mathrm{H} / 10$	$499-001 / \mathrm{H}$	$499-001 / \mathrm{H} / 10$	DISCREET ${ }^{T M}$ Bracket Upper + Lower 5-5 w. Hook on 3
$490-001 / \mathrm{H} 345$	$490-001 / \mathrm{H} 345 / 10$	$499-001 / \mathrm{H} 345$	$499-001 / \mathrm{H} 345 / 10$	DISCREET ${ }^{T M}$ Bracket Upper + Lower 5-5 w. Hook on 3-4-5

[^0]
CLEAR Ceramic ${ }^{\text {TM }}$ Bracket

Flawless, pure Monocrystalline Sapphire Ceramic brackets

A solid single crystal, continuous edge to edge with no grain boundaries produces maximum optical clarity

Most of the ceramic brackets on the market are made out of either polycrystalline or monocrystalline sapphire. The primary difference between these two materials is their optical clarity. Monocrystalline alumina ceramic brackets have a more translucent (clearer) appearance whereas polycrystalline brackets are more whitish (tooth colored). This form of alumina has been selected because of its superior physical strength and favorable optical and aesthetic properties. Our ceramics are nonporous, resistant to staining and eliminate the absorption of odors.

The Science behind bond strength

Micrographs show clearly our unique Double Fusion Method. The base of the bracket is coated with Zirconia powder, which produces Spheroid particles; each particle has a mass of tiny dendrites. These properties allow for a secure retention during the length of treatment and provide predictable and safe debonding at the end of treatment.

Correct material produces big advantages

Monocrystalline Sapphire alumina has a modulus of rupture greater than $35,000 \mathrm{psi}(241.3 \mathrm{MPa})$. This strength is essential to producing a ceramic bracket without breakage issues. Standard ceramic brackets are rather bulky as they have to overcome the physical property limitations of other types of material, so they tend to be somewhat uncomfortable to the patient.

Monocrystalline Sapphire's strength enables us to offer a small and comfortable bracket for the patient. It offers our orthodontists the mechanical strength needed for predictable treatment.

CLEAR CERAMIC ${ }^{\text {TM }}$ BRACKETS Roth*

| UPPER | Torque | Ang | In/Out | Width | $U-R .018$ | $U-L .018$ | $U-R .022$ | $U-L .022$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Central | 12° | 5° | 1.14 | 3.20 | $450-11$ | $450-21$ | $455-11$ | $455-21$ |
| Lateral | 8° | 9° | 1.46 | 2.90 | $450-12$ | $450-22$ | $455-12$ | $455-22$ |
| Cuspid | -2° | 9° | 0.52 | 3.50 | $450-13$ | $450-23$ | $455-13$ | $455-23$ |
| Cuspid w hook | -2° | 9° | 0.52 | 3.50 | $450-13 / \mathrm{H}$ | $450-23 / \mathrm{H}$ | $455-13 / \mathrm{H}$ | $455-23 / \mathrm{H}$ |
| 1. Bicuspid | -7° | 0° | 1.12 | 3.20 | $450-14 / 25$ | $450-14 / 25$ | $455-14 / 25$ | $455-14 / 25$ |
| 1. Bicuspid w hook | -7° | 0° | 1.12 | 3.20 | $450-14 / 15 / \mathrm{H}$ | $450-24 / 25 / \mathrm{H}$ | $455-14 / 15 / \mathrm{H}$ | $455-24 / 25 / \mathrm{H}$ |
| 2. Bicuspid | -7° | 0° | 1.12 | 3.20 | $450-14 / 25$ | $450-14 / 25$ | $455-14 / 25$ | $455-14 / 25$ |
| 2. Bicuspid w hook | -7° | 0° | 1.12 | 3.20 | $450-14 / 15 / \mathrm{H}$ | $450-24 / 25 / \mathrm{H}$ | $455-14 / 15 / \mathrm{H}$ | $455-24 / 25 / \mathrm{H}$ |

LOWER	Torque	Ang	In/Out	Width	L-R 018	L-L. 018	L - R . 022	L - L. 022
Anterior	0°	0°	1.44	2.83	450-31/42	450-31/42	455-31/42	455-31/42
Cuspid	-11°	7°	0.80	3.50	450-43	450-33	455-43	455-33
Cuspid w hook	-11°	7°	0.80	3.50	450-43/H	450-33/H	455-43/H	455-33/H
1. Bicuspid	-17°	3°	1.10	3.20	450-44	450-34	455-44	455-34
1. Bicuspid w hook	-17°	3°	1.10	3.20	450-44/H	450-34/H	455-44/H	455-34/H
2. Bicuspid	-21°	6°	1.10	3.20	450-45	450-35	455-45	455-35
2. Bicuspid w hook	-21°	6°	1.10	3.20	450-45/H	450-35/H	455-45/H	455-35/H

Cases-Single tray or 10 -case tray

1 case .018	10 case .018	1 case .022	10 case .022	Description
$450-001$	$450-001 / 10$	$455-001$	$455-001 / 10$	CLEAR $^{\text {TM }}$ Bracket Upper + Lower 5-5
$450-001 / \mathrm{H}$	$450-001 / \mathrm{H} / 10$	$455-001 / \mathrm{H}$	$455-001 / \mathrm{H} / 10$	CLEAR $^{T \mathrm{~m}}$ Bracket Upper + Lower 5-5 w. Hook on 3
$450-001 / \mathrm{H} 345$	$450001 / \mathrm{H} 345 / 10$	$455-001 / \mathrm{H} 345$	$455-001 / \mathrm{H} 345 / 10$	CLEAR $^{\text {TM }}$ Bracket Upper + Lower 5-5 w. Hook on 3-4-5

CLEAR CERAMIC ${ }^{\text {TM }}$ BRACKETS MBT (McLaughlin/Bennett/Trevisi)*

| UPPER | Torque | Ang | In/Out | Width | $U-R .018$ | $U-L .018$ | $U-R .022$ | $U-L .022$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Central | 17° | 4° | 1.06 | 3.20 | $460-11$ | $460-21$ | $466-11$ | $466-21$ |
| Lateral | 10° | 8° | 1.45 | 2.90 | $460-12$ | $460-22$ | $466-12$ | $466-22$ |
| Cuspid | 0° | 8° | 1.00 | 3.50 | $460-13$ | $460-23$ | $466-13$ | $466-23$ |
| Cuspid w hook | 0° | 8° | 1.00 | 3.50 | $460-13 / \mathrm{H}$ | $460-23 / \mathrm{H}$ | $466-13 / \mathrm{H}$ | $466-23 / \mathrm{H}$ |
| 1. Bicuspid | -7° | 0° | 1.42 | 3.20 | $460-14 / 25$ | $460-14 / 25$ | $466-14 / 25$ | $466-14 / 25$ |
| 1. Bicuspid whook | -7° | 0° | 1.42 | 3.20 | $460-14 / 15 / \mathrm{H}$ | $460-24 / 25 / \mathrm{H}$ | $466-14 / 15 / \mathrm{H}$ | $466-24 / 25 / \mathrm{H}$ |
| 2. Bicuspid | -7° | 0° | 1.42 | 3.20 | $460-14 / 25$ | $460-14 / 25$ | $466-14 / 25$ | $466-14 / 25$ |
| 2. Bicuspid w hook | -7° | 0° | 1.42 | 3.20 | $460-14 / 15 / \mathrm{H}$ | $460-24 / 25 / \mathrm{H}$ | $466-14 / 15 / \mathrm{H}$ | $466-24 / 25 / \mathrm{H}$ |

LOWER	Torque	Ang	In/Out	Width	L- R . 018	L-L. 018	L - R . 022	L - L. 022
Anterior	-6°	0°	1.50	2.83	460-41/42	460-31/32	466-41/42	466-31/32
Cuspid	0°	3°	0.88	3.50	460-43	460-33	466-43	466-33
Cuspid whook	0°	3°	0.88	3.50	460-43/H	460-33/H	466-43/H	466-33/H
1. Bicuspid	- 12°	2°	1.72	3.20	460-44	460-34	466-44	466-34
1. Bicuspid whook	-12°	2°	1.72	3.20	460-44/H	460-34/H	466-44/H	466-34/H
2. Bicuspid	-17 ${ }^{\circ}$	2°	1.72	3.20	460-45	460-35	466-45	466-35
2. Bicuspid whook	-17 ${ }^{\circ}$	2°	1.72	3.20	460-45/H	460-35/H	466-45/H	466-35/H

Cases-Single tray or 10-case tray

1 case .018	10 case .018	1 case .022	10 case .022	Description
$460-001$	$460-001 / 10$	$466-001$	$466-001 / 10$	CLEAR ${ }^{T M}$ Bracket Upper + Lower 5-5
$460-001 / \mathrm{H}$	$460-001 / \mathrm{H} / 10$	$466-001 / \mathrm{H}$	$466-001 / \mathrm{H} / 10$	CLEAR ${ }^{T M}$ Bracket Upper + Lower 5-5 w. Hook on 3
$460-001 / \mathrm{H} 345$	$460-001 / \mathrm{H} 345 / 10$	$466-001 / \mathrm{H} 345$	$466-001 / \mathrm{H} 345 / 10$	CLEAR ${ }^{T M}$ Bracket Upper + Lower 5-5 w. Hook on 3-4-5

[^0]: *The adenta version of this technique does not indicate endorsement by the doctor. They do not claim to be a duplication of any other

